Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurorehabil Neural Repair ; 38(3): 229-239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329006

RESUMO

BACKGROUND: Stroke can impair manual dexterity, leading to loss of independence following incomplete recovery. Enhancing our understanding of dexterity impairment may improve neurorehabilitation. OBJECTIVES: The study aimed to measure dexterity components in acute stroke patients with and without hand motor deficits, compare them to those of healthy controls (HC), and to explore the neural substrates involved in specific components of dexterity. METHODS: We used the Dextrain Manipulandum to quantify fine finger force control, finger selection accuracy, coactivation, and reaction time (RT). Dexterity was evaluated twice (2 days apart) in 74 patients and 14 HC. Voxel-Lesion-Symptom-Mapping (VLSM) was used to analyze the relationship between tissue damage and dexterity. Results. Due to severe paresis or fatigue, 24 patients could not perform these tasks. In 50 patients (included 4.6 ± 3.3 days post-stroke), finger force control improved (P < .001), as it did in HC (P = .03) who performed better than patients on both evaluations. Accuracy of finger selection did not improve significantly in any group, but the HC performed better on both evaluations. Unexpectedly, coactivation was better in patients than in HC at D3 (P = .03). There were no between-group differences in RT. VLSM showed that damage to the superior temporal gyrus (STG) impaired finger force control while damage to the posterior limb of the internal capsule (PLIC) impaired finger selectivity. CONCLUSIONS: Acute stroke affecting the STG or PLIC impaired selective components of dexterity. Patients with mild to moderate impairment showed better finger force control and accuracy selection within 48 hours, suggesting the feasibility of detecting early dexterity improvements.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Mãos , Dedos , Extremidade Superior , Paresia
2.
Stroke ; 53(7): 2361-2368, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35311345

RESUMO

BACKGROUND: It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1-7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping. METHODS: Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM. RESULTS: Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL. CONCLUSIONS: Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01519843.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Cápsula Interna/diagnóstico por imagem , Destreza Motora , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Extremidade Superior
3.
Acta Neurol Belg ; 112(2): 193-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426662

RESUMO

Meningoencephalitis is a rare but aggressive complication of rheumatoid arthritis (RA). The most common complications of RA occur in the severe and chronic stages of the disease. Only a few cases have been reported in the literature. The symptoms are usually nonspecific, and arthralgia may be missing. Brain MRI and CSF analysis are useful to guide the diagnosis. However, a biopsy is required to demonstrate the existence of granulomatous lesions and the lack of mycobacterium infection. Early detection is essential to prevent neurological complications. Treatment consists of intravenous high doses of corticoid followed by oral tapered doses associated with immunosuppressive therapy. The present case is remarkable by the presence of granulomatous lesions in the lung and meninges and the dramatic improvement after immunosuppressive therapy.


Assuntos
Artrite Reumatoide/complicações , Granuloma/etiologia , Meningite/etiologia , Idoso , Encéfalo/patologia , Granuloma/complicações , Humanos , Linfócitos/patologia , Imageamento por Ressonância Magnética , Masculino , Meningite/complicações , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...